3.507 \(\int \frac{x^2}{\sqrt{a+b x^3} \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=48 \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^3}}{\sqrt{b} \sqrt{c+d x^3}}\right )}{3 \sqrt{b} \sqrt{d}} \]

[Out]

(2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^3])/(Sqrt[b]*Sqrt[c + d*x^3])])/(3*Sqrt[b]*Sqrt[d])

________________________________________________________________________________________

Rubi [A]  time = 0.0594079, antiderivative size = 48, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.154, Rules used = {444, 63, 217, 206} \[ \frac{2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^3}}{\sqrt{b} \sqrt{c+d x^3}}\right )}{3 \sqrt{b} \sqrt{d}} \]

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[a + b*x^3]*Sqrt[c + d*x^3]),x]

[Out]

(2*ArcTanh[(Sqrt[d]*Sqrt[a + b*x^3])/(Sqrt[b]*Sqrt[c + d*x^3])])/(3*Sqrt[b]*Sqrt[d])

Rule 444

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^2}{\sqrt{a+b x^3} \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+b x} \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{\sqrt{c-\frac{a d}{b}+\frac{d x^2}{b}}} \, dx,x,\sqrt{a+b x^3}\right )}{3 b}\\ &=\frac{2 \operatorname{Subst}\left (\int \frac{1}{1-\frac{d x^2}{b}} \, dx,x,\frac{\sqrt{a+b x^3}}{\sqrt{c+d x^3}}\right )}{3 b}\\ &=\frac{2 \tanh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^3}}{\sqrt{b} \sqrt{c+d x^3}}\right )}{3 \sqrt{b} \sqrt{d}}\\ \end{align*}

Mathematica [A]  time = 0.0652979, size = 85, normalized size = 1.77 \[ \frac{2 \sqrt{c+d x^3} \sinh ^{-1}\left (\frac{\sqrt{d} \sqrt{a+b x^3}}{\sqrt{b c-a d}}\right )}{3 \sqrt{d} \sqrt{b c-a d} \sqrt{\frac{b \left (c+d x^3\right )}{b c-a d}}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[a + b*x^3]*Sqrt[c + d*x^3]),x]

[Out]

(2*Sqrt[c + d*x^3]*ArcSinh[(Sqrt[d]*Sqrt[a + b*x^3])/Sqrt[b*c - a*d]])/(3*Sqrt[d]*Sqrt[b*c - a*d]*Sqrt[(b*(c +
 d*x^3))/(b*c - a*d)])

________________________________________________________________________________________

Maple [F]  time = 0.04, size = 0, normalized size = 0. \begin{align*} \int{{x}^{2}{\frac{1}{\sqrt{b{x}^{3}+a}}}{\frac{1}{\sqrt{d{x}^{3}+c}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x)

[Out]

int(x^2/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.29587, size = 440, normalized size = 9.17 \begin{align*} \left [\frac{\sqrt{b d} \log \left (8 \, b^{2} d^{2} x^{6} + b^{2} c^{2} + 6 \, a b c d + a^{2} d^{2} + 8 \,{\left (b^{2} c d + a b d^{2}\right )} x^{3} + 4 \,{\left (2 \, b d x^{3} + b c + a d\right )} \sqrt{b x^{3} + a} \sqrt{d x^{3} + c} \sqrt{b d}\right )}{6 \, b d}, -\frac{\sqrt{-b d} \arctan \left (\frac{{\left (2 \, b d x^{3} + b c + a d\right )} \sqrt{b x^{3} + a} \sqrt{d x^{3} + c} \sqrt{-b d}}{2 \,{\left (b^{2} d^{2} x^{6} + a b c d +{\left (b^{2} c d + a b d^{2}\right )} x^{3}\right )}}\right )}{3 \, b d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/6*sqrt(b*d)*log(8*b^2*d^2*x^6 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 8*(b^2*c*d + a*b*d^2)*x^3 + 4*(2*b*d*x^3 +
b*c + a*d)*sqrt(b*x^3 + a)*sqrt(d*x^3 + c)*sqrt(b*d))/(b*d), -1/3*sqrt(-b*d)*arctan(1/2*(2*b*d*x^3 + b*c + a*d
)*sqrt(b*x^3 + a)*sqrt(d*x^3 + c)*sqrt(-b*d)/(b^2*d^2*x^6 + a*b*c*d + (b^2*c*d + a*b*d^2)*x^3))/(b*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{x^{2}}{\sqrt{a + b x^{3}} \sqrt{c + d x^{3}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(b*x**3+a)**(1/2)/(d*x**3+c)**(1/2),x)

[Out]

Integral(x**2/(sqrt(a + b*x**3)*sqrt(c + d*x**3)), x)

________________________________________________________________________________________

Giac [A]  time = 1.14752, size = 73, normalized size = 1.52 \begin{align*} -\frac{2 \, b \log \left ({\left | -\sqrt{b x^{3} + a} \sqrt{b d} + \sqrt{b^{2} c +{\left (b x^{3} + a\right )} b d - a b d} \right |}\right )}{3 \, \sqrt{b d}{\left | b \right |}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(b*x^3+a)^(1/2)/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-2/3*b*log(abs(-sqrt(b*x^3 + a)*sqrt(b*d) + sqrt(b^2*c + (b*x^3 + a)*b*d - a*b*d)))/(sqrt(b*d)*abs(b))